HYDROGEOLOGY

Time Allowed: Three Hours

Maximum Marks: 200

Question Paper Specific Instructions

Please read each of the following instructions carefully before attempting questions:

There are **NINE** questions divided under **FIVE** sections.

Candidate has to attempt **FIVE** questions in all.

The ONLY question in Section A is compulsory.

Out of the remaining **EIGHT** questions, the candidate has to attempt **FOUR**, choosing **ONE** from each of the other Sections B, C, D and E.

The number of marks carried by a question/part is indicated against it.

Symbols, abbreviations and notations have their usual standard meanings.

Neat sketches are to be drawn to illustrate answers, wherever required.

Wherever required, graphs/tables are to be drawn on the Question-cum-Answer Booklet itself.

Attempts of questions shall be counted in sequential order. Unless struck off, attempt of a question shall be counted even if attempted partly.

Any page or portion of the page left blank in the Question-cum-Answer Booklet must be clearly struck off.

Answers must be written in **ENGLISH** only.

SECTION A

(Compulsory Section)

Q1.	Write short notes on the following in not more than 5 sentences		
	each:		5×8=40
	(a)	Geologic Materials as Aquifers	5
	(b)	Isohyets	5
	(c)	Relationship between Porosity, Specific retention and Specific yield	5
	(d)	Residence Time of Groundwater	5
	(e)	Reynolds Number	5
	(f)	Groundwater Drawdown	5
	(g)	Direct Rotary Drilling	5
	(h)	Wenner Array in Resistivity Survey	5

SECTION B

Qz.	(a)	Derive Darcy's equation for anisotropic materials.	15
	(b)	Groundwater flows through an aquifer of cross-section area 10,000 m ² and with a length of 1000 m. Hydraulic heads at the groundwater entry and exit points in an aquifer are 250 m and 200 m respectively. Groundwater from the aquifer discharges into a stream at a rate of 100 m ³ /day. Calculate the hydraulic conductivity of the aquifer. If the effective porosity of the aquifer is 0·2, what is the linear groundwater velocity?	15
	()	751.00	10
	(c)	Differentiate between Dispersion and Diffusion.	10
Q3.	(a)	Differentiate between Hydraulic conductivity and Permeability.	15
	(b)	An aquifer consisting of 400 m interbedded sandstone and shale has 60% sandstone. The sandstone and shale have hydraulic conductivity of 0·1 m/s each and vertical hydraulic conductivity of 0·01 m/s each. Calculate the ratio of equivalent horizontal hydraulic conductivity and vertical hydraulic conductivity of the aquifer.	15
	(c)	If hydraulic conductivity and thickness of an aquifer are 0.5 cm/sec and 25 m respectively, what is the transmissivity of the aquifer?	10

SECTION C

Q4 .	(a)	Derive Thiem's method for steady-state flow in a confined aquifer.	15
	(b)	Discuss on well completion and development methods.	15
	(c)	What is base flow? How is it estimated?	10
Q5.	(a)	What is the difference between aquifer performance test and step drawdown test for sustainable yield of tube-wells?	15
	(b)	Explain the difference between the groundwater level fluctuation due to evaporation and evapotranspiration.	15
	(c)	Define slug test. How is transmissivity of aquifer calculated by this test?	10

SECTION D

Q6.	(a)	Explain the technique to infer suitable sites for groundwater exploration by using Resistivity meter.	15
	(b)	Explain borehole logging with special reference to Gamma logging in groundwater exploration.	15
	(c)	Discuss the drilling methods for groundwater exploration in different geological formations.	10
Q 7.	(a)	What is DTH drilling for groundwater exploration?	15
	(b)	Using hyperspectral sensor, how is it possible to infer groundwater quality?	15
	(c)	What is Proton Precession Magnetometer? Discuss the functioning of this instrument in groundwater exploration.	10

SECTION E

Q 8.	(a)	What are the major chemical constituents of groundwater? Discuss the factors that may affect the composition of groundwater.	15
	(b)	What is Total Dissolved Solids (TDS) in groundwater? Explain its significance in determining the suitability of groundwater for drinking purposes.	15
	(c)	Express 23 mg/L sodium (Na) in mol/L (Atomic wt. of Na = 23).	10
Q9.	(a)	Discuss the use of Hydrogen and Oxygen isotopes in the study of groundwater.	15
	(b) • .	What is Artificial groundwater recharge? Discuss with suitable illustration, Roof-Top Rainwater Harvesting System for recharging the groundwater.	15
	(c)	Calculate the total harvestable rainwater from a roof having an area of 40 m^2 , with total annual rainfall of 60 inches and runoff coefficient 0.9 .	10